Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
2.
Hemasphere ; 6(3): e701, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35233509

RESUMO

In adult patients, the treatment outcome of acute lymphoblastic leukemia (ALL) remains suboptimal. Here, we used an ex vivo drug testing platform and comprehensive molecular profiling to discover new drug candidates for B-ALL. We analyzed sensitivity of 18 primary B-ALL adult patient samples to 64 drugs in a physiological concentration range. Whole-transcriptome sequencing and publicly available expression data were used to examine gene expression biomarkers for observed drug responses. Apoptotic modulators targeting BCL2 and MDM2 were highly effective. Philadelphia chromosome-negative (Ph-) samples were sensitive to both BCL2/BCL-W/BCL-XL-targeting agent navitoclax and BCL2-selective venetoclax, whereas Ph-positive (Ph+) samples were more sensitive to navitoclax. Expression of BCL2 was downregulated and BCL-W and BCL-XL upregulated in Ph+ ALL compared with Ph- samples, providing elucidation for the observed difference in drug responses. A majority of the samples were sensitive to MDM2 inhibitor idasanutlin. The regulatory protein MDM2 suppresses the function of tumor suppressor p53, leading to impaired apoptosis. In B-ALL, the expression of MDM2 was increased compared with other hematological malignancies. In B-ALL cell lines, a combination of BCL2 and MDM2 inhibitor was synergistic. In summary, antiapoptotic proteins including BCL2 and MDM2 comprise promising targets for future drug studies in B-ALL.

3.
Blood Cancer Discov ; 2(3): 238-249, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34661156

RESUMO

In myelodysplastic syndrome (MDS) and myeloproliferative neoplasm (MPN), bone marrow (BM) histopathology is assessed to identify dysplastic cellular morphology, cellularity, and blast excess. Yet, other morphologic findings may elude the human eye. We used convolutional neural networks to extract morphologic features from 236 MDS, 87 MDS/MPN, and 11 control BM biopsies. These features predicted genetic and cytogenetic aberrations, prognosis, age, and gender in multivariate regression models. Highest prediction accuracy was found for TET2 [area under the receiver operating curve (AUROC) = 0.94] and spliceosome mutations (0.89) and chromosome 7 monosomy (0.89). Mutation prediction probability correlated with variant allele frequency and number of affected genes per pathway, demonstrating the algorithms' ability to identify relevant morphologic patterns. By converting regression models to texture and cellular composition, we reproduced the classical del(5q) MDS morphology consisting of hypolobulated megakaryocytes. In summary, this study highlights the potential of linking deep BM histopathology with genetics and clinical variables. SIGNIFICANCE: Histopathology is elementary in the diagnostics of patients with MDS, but its high-dimensional data are underused. By elucidating the association of morphologic features with clinical variables and molecular genetics, this study highlights the vast potential of convolutional neural networks in understanding MDS pathology and how genetics is reflected in BM morphology. See related commentary by Elemento, p. 195.


Assuntos
Síndromes Mielodisplásicas , Doenças Mieloproliferativas-Mielodisplásicas , Medula Óssea/patologia , Humanos , Aprendizado de Máquina , Mutação/genética , Síndromes Mielodisplásicas/diagnóstico , Doenças Mieloproliferativas-Mielodisplásicas/genética
4.
Leukemia ; 35(7): 1964-1975, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33168949

RESUMO

The oncogenic protein Bcr-Abl has two major isoforms, p190Bcr-Abl and p210Bcr-Abl. While p210Bcr-Abl is the hallmark of chronic myeloid leukemia (CML), p190Bcr-Abl occurs in the majority of Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL) patients. In CML, p190Bcr-Abl occurs in a minority of patients associating with distinct hematological features and inferior outcomes, yet the pathogenic role of p190Bcr-Abl and potential targeting therapies are largely uncharacterized. We employed next generation sequencing, phospho-proteomic profiling, and drug sensitivity testing to characterize p190Bcr-Abl in CML and hematopoietic progenitor cell line models (Ba/f3 and HPC-LSK). p190Bcr-Abl CML patients demonstrated poor response to imatinib and frequent mutations in epigenetic modifiers genes. In contrast with p210Bcr-Abl, p190Bcr-Abl exhibited specific transcriptional upregulation of interferon, interleukin-1 receptor, and P53 signaling pathways, associated with hyperphosphorylation of relevant signaling molecules including JAK1/STAT1 and PAK1 in addition to Src hyperphosphorylation. Comparable to p190Bcr-Abl CML patients, p190Bcr-Abl cell lines demonstrated similar transcriptional and phospho-signaling signatures. With the drug sensitivity screening we identified targeted drugs with specific activity in p190Bcr-Abl cell lines including IAP-, PAK1-, and Src inhibitors and glucocorticoids. Our results provide novel insights into the mechanisms underlying the distinct features of p190Bcr-Abl CML and promising therapeutic targets for this high-risk patient group.


Assuntos
Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Transdução de Sinais/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica/métodos , Glucocorticoides/genética , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Oncogenes/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteômica/métodos , Transcrição Gênica/genética , Regulação para Cima/genética
5.
Blood Adv ; 4(2): 274-286, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31968078

RESUMO

The immunologic microenvironment in various solid tumors is aberrant and correlates with clinical survival. Here, we present a comprehensive analysis of the immune environment of acute myeloid leukemia (AML) bone marrow (BM) at diagnosis. We compared the immunologic landscape of formalin-fixed paraffin-embedded BM trephine samples from AML (n = 69), chronic myeloid leukemia (CML; n = 56), and B-cell acute lymphoblastic leukemia (B-ALL) patients (n = 52) at diagnosis to controls (n = 12) with 30 immunophenotype markers using multiplex immunohistochemistry and computerized image analysis. We identified distinct immunologic profiles specific for leukemia subtypes and controls enabling accurate classification of AML (area under the curve [AUC] = 1.0), CML (AUC = 0.99), B-ALL (AUC = 0.96), and control subjects (AUC = 1.0). Interestingly, 2 major immunologic AML clusters differing in age, T-cell receptor clonality, and survival were discovered. A low proportion of regulatory T cells and pSTAT1+cMAF- monocytes were identified as novel biomarkers of superior event-free survival in intensively treated AML patients. Moreover, we demonstrated that AML BM and peripheral blood samples are dissimilar in terms of immune cell phenotypes. To conclude, our study shows that the immunologic landscape considerably varies by leukemia subtype suggesting disease-specific immunoregulation. Furthermore, the association of the AML immune microenvironment with clinical parameters suggests a rationale for including immunologic parameters to improve disease classification or even patient risk stratification.


Assuntos
Medula Óssea/metabolismo , Leucemia Mieloide Aguda/imunologia , Receptores de Antígenos de Linfócitos T/genética , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sobrevida , Adulto Jovem
6.
Blood ; 135(9): 597-609, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-31830245

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy has proven effective in relapsed and refractory B-cell malignancies, but resistance and relapses still occur. Better understanding of mechanisms influencing CAR T-cell cytotoxicity and the potential for modulation using small-molecule drugs could improve current immunotherapies. Here, we systematically investigated druggable mechanisms of CAR T-cell cytotoxicity using >500 small-molecule drugs and genome-scale CRISPR-Cas9 loss-of-function screens. We identified several tyrosine kinase inhibitors that inhibit CAR T-cell cytotoxicity by impairing T-cell signaling transcriptional activity. In contrast, the apoptotic modulator drugs SMAC mimetics sensitized B-cell acute lymphoblastic leukemia and diffuse large B-cell lymphoma cells to anti-CD19 CAR T cells. CRISPR screens identified death receptor signaling through FADD and TNFRSF10B (TRAIL-R2) as a key mediator of CAR T-cell cytotoxicity and elucidated the RIPK1-dependent mechanism of sensitization by SMAC mimetics. Death receptor expression varied across genetic subtypes of B-cell malignancies, suggesting a link between mechanisms of CAR T-cell cytotoxicity and cancer genetics. These results implicate death receptor signaling as an important mediator of cancer cell sensitivity to CAR T-cell cytotoxicity, with potential for pharmacological targeting to enhance cancer immunotherapy. The screening data provide a resource of immunomodulatory properties of cancer drugs and genetic mechanisms influencing CAR T-cell cytotoxicity.


Assuntos
Citotoxicidade Imunológica/imunologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Linfócitos T Citotóxicos/imunologia , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Testes Imunológicos de Citotoxicidade/métodos , Humanos , Ativação Linfocitária/imunologia , Linfoma Difuso de Grandes Células B/imunologia , Receptores de Antígenos Quiméricos
7.
Leukemia ; 33(7): 1570-1582, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30635636

RESUMO

As novel immunological treatments are gaining a foothold in the treatment of acute lymphoblastic leukemia (ALL), it is elemental to examine ALL immunobiology in more detail. We used multiplexed immunohistochemistry (mIHC) to study the immune contexture in adult precursor B cell ALL bone marrow (BM). In addition, we developed a multivariate risk prediction model that stratified a poor survival group based on clinical parameters and mIHC data. We analyzed BM biopsy samples of ALL patients (n = 52) and healthy controls (n = 14) using mIHC with 30 different immunophenotype markers and computerized image analysis. In ALL BM, the proportions of M1-like macrophages, granzyme B+CD57+CD8+ T cells, and CD27+ T cells were decreased, whereas the proportions of myeloid-derived suppressor cells and M2-like macrophages were increased. Also, the expression of checkpoint molecules PD1 and CTLA4 was elevated. In the multivariate model, age, platelet count, and the proportion of PD1+TIM3+ double-positive CD4+ T cells differentiated a poor survival group. These results were validated by flow cytometry in a separate cohort (n = 31). In conclusion, the immune cell contexture in ALL BM differs from healthy controls. CD4+PD1+TIM3+ T cells were independent predictors of poor outcome in our multivariate risk model, suggesting that PD1 might serve as an attractive immuno-oncological target in B-ALL.


Assuntos
Medula Óssea/imunologia , Linfócitos T CD8-Positivos/imunologia , Transplante de Células-Tronco Hematopoéticas , Macrófagos/imunologia , Células Supressoras Mieloides/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Microambiente Tumoral/imunologia , Adolescente , Adulto , Idoso , Antígeno CTLA-4 , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...